Caching is envisioned to play a critical role in nextgeneration content delivery infrastructure, cellular networks, and Internet architectures. By smartly storing the most popular contents at the storage-enabled network entities during off-peak demand instances, caching can benefit both network infrastructure as well as end users, during on-peak periods. In this context, distributing the limited storage capacity across network entities calls for decentralized caching schemes. Many practical caching systems involve a parent caching node connected to multiple leaf nodes to serve user file requests. To model the two-way interactive influence between caching decisions at the parent and leaf nodes, a reinforcement learning (RL) framework is put forth. To handle the large continuous state space, a scalable deep RL approach is pursued. The novel approach relies on a hyper-deep Q-network to learn the Q-function, and thus the optimal caching policy, in an online fashion. Reinforcing the parent node with ability to learnand-adapt to unknown policies of leaf nodes as well as spatiotemporal dynamic evolution of file requests, results in remarkable caching performance, as corroborated through numerical tests.