The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 has defined ambitious new benchmarks to advance the state‐of‐the‐art in autonomous operation of ground‐based and flying robots. This study covers our approaches to solve the two challenges that involved micro aerial vehicles (MAV). Challenge 1 required reliable target perception, fast trajectory planning, and stable control of an MAV to land on a moving vehicle. Challenge 3 demanded a team of MAVs to perform a search and transportation task, coined “Treasure Hunt,” which required mission planning and multirobot coordination as well as adaptive control to account for the additional object weight. We describe our base MAV setup and the challenge‐specific extensions, cover the camera‐based perception, explain control and trajectory‐planning in detail, and elaborate on mission planning and team coordination. We evaluated our systems in simulation as well as with real‐robot experiments during the competition in Abu Dhabi. With our system, we—as part of the larger team NimbRo—won the MBZIRC Grand Challenge and achieved a third place in both subchallenges involving flying robots.