“… Antibacterial mechanisms of scaffolds | Bacteria used for antibacterial assays | Ref. | Surface charge | Chitosan/zoledronic acid/nano hydroxyapatite scaffold; chitosan/zein/silica scaffold | Positively charged surface disrupting the negatively charged membrane of bacteria; Covering bacterial cell wall to block transport; Penetrating bacterial cell wall to prevent DNA replication | E. coli , S. aureus | [ [100] , [101] , [102] ] |
Pressure (surface charge) | Potassium-sodium niobate scaffold; (Ba,Ca) (Ti,Zr)O 3 scaffold | Piezoelectric effects inducing surface charge; Surface charge generating micro-electric field and ROS around the material to kill bacteria | E. coli , S. aureus | [ 38 , 94 ] |
Photothermal effect | Free carbon-containing forsterite scaffold; Forsterite-hydroxyapatite scaffold | Photothermic effect generating ROS and increasing temperature to kill bacteria | S. aureus , E. coli , MRSA | [ 22 , 99 , 103 ] |
Magnetothermal effect | Mg 2 SiO 4 –CoFe 2 O 4 scaffold | Magnetothermal effect generating thermal energy and increasing temperature to kill bacteria | S. aureus , E. coli | [ 95 , 104 ] |
Sonodynamic effect | Palacos (bone cement) scaffold | Attaching to certain cellular components and inducing damage under ultrasound irradiation; Generating ROS inducing oxidative damage to the cell wall | MRSA, S. aureus , E. Coli, P. aeruginosa | [ [105] , [106] , [107] ] |
Photocatalysis | GDY-modified TiO 2 nanofiber s... |
…”