The interface properties between dielectrics and semiconductors are crucial for electronic devices. In this work, we report the electrical characterization of the interface properties between atomic layer deposited Al2O3 and HfO2 on non-polar a-plane (112¯0) and m-plane (11¯00) GaN grown by hybrid vapor phase epitaxy. A metal oxide semiconductor capacitor (MOSCAP) structure was used to evaluate the interface properties. The impact of annealing on the interface properties was also investigated. The border trap in the oxide, characterized by the capacitance-voltage (C-V) hysteresis loop, was low. The interface state density (Dit), extracted using the ac conductance method, is in the range of 0.5 × 1012/cm2 eV to 7.5 × 1011/cm2 eV within an energy range from 0.2 eV to 0.5 eV below the conduction band minimum. The m-plane GaN MOSCAPs exhibited better interface properties than the a-plane GaN MOSCAPs after annealing. Without annealing, Al2O3 dielectrics had higher border trap density and interface state density compared to HfO2 dielectrics. However, the annealing had different impacts on Al2O3 dielectrics as compared to HfO2. Our results showed that the annealing degraded the quality of the interface in HfO2, but it improved the quality of the interface in Al2O3 devices. The annealing also reduced the positive trapped oxide charge, resulting in a shift of C-V curves towards the positive bias region.