A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage.
The efficacy of germicidal ultraviolet (UV-C) light emitting diodes (LEDs) was evaluated for inactivating human enteroviruses included on the United States Environmental Protection Agency (EPA)’s Contaminant Candidate List (CCL). A UV-C LED device, emitting at peaks of 260 nm and 280 nm and the combination of 260/280 nm together, was used to measure and compare potential synergistic effects of dual wavelengths for disinfecting viral organisms. The 260 nm LED proved to be the most effective at inactivating the CCL enteroviruses tested. To obtain 2-log10 inactivation credit for the 260 nm LED, the fluences (UV doses) required are approximately 8 mJ/cm2 for coxsackievirus A10 and poliovirus 1, 10 mJ/cm2 for enterovirus 70, and 13 mJ/cm2 for echovirus 30. No synergistic effect was detected when evaluating the log inactivation of enteroviruses irradiated by the dual-wavelength UV-C LEDs.
Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. All 15 CGA isolates (1% of the 1,484 isolates analyzed) exhibited resistance to trimethoprim-sulfamethoxazole (TMP-SMZ), accounting for 19.5% of the 77 TMP-SMZ-resistant isolates. Antimicrobial resistance patterns, virulence traits, O:H serotypes, and phylogenetic groupings were compared for CGA and selected non-CGA isolates. The CGA isolates exhibited a wider diversity of resistance profiles and somatic antigens than that found in most previous characterizations of this clonal group. This is the first report of recovery from outside a human host of E. coli CGA isolates with virulence factor and antibiotic resistance profiles typical of CGA isolates from a human source. The occurrence of "human-type" CGA in wastewater effluents demonstrates a potential mode for the dissemination of this clonal group in the environment, with possible secondary transmission to new human or animal hosts.Resistance to commonly prescribed antimicrobial agents is a matter of increasing concern. Along with respiratory infections, urinary tract infections (UTIs) are the most common bacterial infections in the United States requiring antimicrobial therapy. Escherichia coli is the most frequently isolated etiological agent of UTIs, and trimethoprim-sulfamethoxazole (TMP-SMZ) is one of the primary antibiotics empirically prescribed for the treatment of community-acquired UTIs (10). In the United States, there has been a notable increase in the isolation of uropathogenic E. coli strains resistant to TMP-SMZ (10). This finding is of particular interest since resistance to this drug is generally associated with resistance to additional antibiotics (15). Recent epidemiological studies have reported the widespread emergence of a single clonal group, provisionally designated clonal group A (CGA), among TMP-SMZresistant strains of uropathogenic E. coli (1,4,8,9,11). CGA has been reported to account for up to 50% of TMP-SMZresistant E. coli isolates from women with acute uncomplicated cystitis and pyelonephritis (8). Recent human CGA isolates have typically exhibited a number of traits that set them apart from other uropathogenic or drug-resistant E. coli isolates, including their characteristic virulence factor profile, several distinctive O antigens, the H18 flagellar antigen, and multidrug resistance, including resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, and TMP (8).The widespread occurrence of E. coli CGA and the occurrence in one community of a seeming point-source outbreak of UTIs due to the same pulsotype of CGA (11) have raised questions regarding the mode of transmission of these organisms. Recent travel to areas with a high prevalence of TMP-SMZ-resistant E. coli strains has previously been cited as a risk factor for acquiring TM...
A survey for antibiotic-resistant (AR) Escherichia coli in wastewater was undertaken by collecting samples from primary clarifiers and secondary effluents from seven geographically dispersed US wastewater treatment plants (WWTPs). Samples were collected at each WWTP in cool and summer months and cultured using selective media. The resulting isolates were characterized for resistance to imipenem, ciprofloxacin, cefotaxime, and ceftazidime, presence of carbapenemase and extended-spectrum beta-lactamase (ESBL) genes, and phylogroups and sequence types (STs). In total, 322 AR E. coli isolates were identified, of which 65 were imipenem-resistant. Of the 65 carbapenem-resistant E. coli (CREC) isolates, 62% were positive for more than one and 31% were positive for two or more of carbapenemase and ESBL genes targeted. The most commonly detected carbapenemase gene was blaVIM (n = 36), followed by blaKPC (n = 2). A widespread dispersal of carbapenem-resistant STs and other clinically significant AR STs observed in the present study suggested the plausible release of these strains into the environment. The occurrence of CREC in wastewater is a potential concern because this matrix may serve as a reservoir for gene exchange and thereby increase the risk of AR bacteria (including CR) being disseminated into the environment and thence back to humans.
A sensitive and specific method that also demonstrates viability is of interest for detection of E. coli O157:H7 in drinking water. A combination of culture and qPCR was investigated. Two triplex qPCRs, one from a commercial source and another designed for this study were optimized from 5 different assays to be run on a single qPCR plate. The qPCR assays were specific for 33 E. coli O157:H7 strains tested and detected 500 cells spiked in a background of 10(8) nontarget bacterial cells. The qPCR detection was combined with an enrichment process using Presence Absence (P/A) broth to detect chlorine and starvation stressed cells. qPCR analysis performed post-enrichment allowed the detection of 3-4 cells/L as indicated by a sharp increase in fluorescence (lowering of Ct values) from pre-enrichment levels, demonstrating a 5-6 log increase in the number of cells. When six vulnerable untreated surface water samples were examined, only one was positive for viable E. coli O157:H7 cells. These results suggest that the culture-PCR procedure can be used for rapid detection of E. coli O157:H7 in drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.