2002
DOI: 10.1007/s00453-001-0085-8
|View full text |Cite
|
Sign up to set email alerts
|

Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks

Abstract: A malleable parallel task is one whose execution time is a function of the number of (identical) processors alloted to it. We study the problem of scheduling a set of n independent malleable tasks on a xed number of parallel processors, and propose an approximation scheme that for any xed > 0, computes in O(n) time a non-preemptive schedule of length at most (1 +) times the optimum.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
49
0

Year Published

2002
2002
2018
2018

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 69 publications
(49 citation statements)
references
References 10 publications
0
49
0
Order By: Relevance
“…Using dual-approximation techniques, Mounie et al [22] presented a 1.5-approximation algorithm for moldable tasks while assuming that the total area of a task is a non-decreasing function of the allocated processors. Also for moldable tasks, Jansen and Porkolab [18] presented, for any > 0, a (1+ )-approximation scheme when the number of processors is a fixed constant.…”
Section: Approximation Algorithmsmentioning
confidence: 99%
See 1 more Smart Citation
“…Using dual-approximation techniques, Mounie et al [22] presented a 1.5-approximation algorithm for moldable tasks while assuming that the total area of a task is a non-decreasing function of the allocated processors. Also for moldable tasks, Jansen and Porkolab [18] presented, for any > 0, a (1+ )-approximation scheme when the number of processors is a fixed constant.…”
Section: Approximation Algorithmsmentioning
confidence: 99%
“…Figure 1 shows an example of applying both scheduling paradigms to a same set of tasks under a single-resource constraint. Compared to some more sophisticated scheduling algorithms that could guarantee better theoretical bounds (e.g., [22,18]), list-based and pack-based algorithms often produce simple yet efficient schedules that can be easily implemented by practical runtime systems. Furthermore, these algorithms can be adopted to the online and/or heterogeneous scheduling environment with minimal change, thus offering more general applicability to a wide range of scheduling scenarios.…”
Section: Introductionmentioning
confidence: 99%
“…Malleable Scheduling Quite some research has been dedicated to malleable scheduling for independent tasks,see [2,6,15,16,23,25,26,30]. Notably, Turek et al [30] were the first to describe a general method to employ algorithms for independent parallel tasks to obtain similar results for the malleable case.…”
Section: Related Workmentioning
confidence: 99%
“…One representative example is [48], which reports success in optimal multiprocessor scheduling for periodic systems with deadlines, precedence, and exclusion constraints. A more recent one is [31], which shows how to approximate optimal scheduling using linear programming.…”
Section: Static Schedulingmentioning
confidence: 99%