2017
DOI: 10.1371/journal.pone.0181079
|View full text |Cite
|
Sign up to set email alerts
|

Link prediction on Twitter

Abstract: With over 300 million active users, Twitter is among the largest online news and social networking services in existence today. Open access to information on Twitter makes it a valuable source of data for research on social interactions, sentiment analysis, content diffusion, link prediction, and the dynamics behind human collective behaviour in general. Here we use Twitter data to construct co-occurrence language networks based on hashtags and based on all the words in tweets, and we use these networks to stu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
34
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 61 publications
(35 citation statements)
references
References 60 publications
0
34
0
1
Order By: Relevance
“…Classic link prediction methods on social media use graph properties of the social network or NLP feature of nodes to predict links between entities. For example, [11] is base solely on graph features and [3] uses a similar technique for the social networks in healthcare. Meanwhile, [1] uses common words to cluster and rank nodes and based on that predicts the closely-ranked nodes to be connected.…”
Section: Related Workmentioning
confidence: 99%
“…Classic link prediction methods on social media use graph properties of the social network or NLP feature of nodes to predict links between entities. For example, [11] is base solely on graph features and [3] uses a similar technique for the social networks in healthcare. Meanwhile, [1] uses common words to cluster and rank nodes and based on that predicts the closely-ranked nodes to be connected.…”
Section: Related Workmentioning
confidence: 99%
“…Nadalje, značajke, odnosno, vektori značajki koji se koriste u postupcima učenja šume slučajnih stabala (Breiman, 2001) temelje se na mjerama kompleksnih mreža (Newman, 2018). Kompleksne mreže primjenjuju se na raznim područjima, poput predviđanja novih veza u društvenim mrežama (Martinčić-Ipšić et al, 2017), određivanja ključnih riječi u tekstu (Beliga et al, 2015;Beliga et al, 2016), modeliranja jezika , analize koautorstva (Meštrović i Grubiša, 2015) i sličnog, dok je šahovska igra samo mjestimično modelirana kroz formalizme kompleksnih mreža, i to u radu (Farren et al, 2013), stoga je to upravo i predmet istraživanja. U radu se istražuju mogućnosti modeliranja šahovske igre kroz formalizam kompleksnih mreža, s ciljem dobivanja boljeg uvida u razvoj šahovske partije, te uvida u način na koji informacije dobivene iz strukture kompleksnih mreža utječu na predviđanje konačnog ishoda partije.…”
Section: Uvodunclassified
“…Theoretical guarantees and recovery conditions are provided in the references [26], [28], [29]. Similar research work also includes link prediction in social networks such as Twitter [30], [31]. Link prediction refers to inferring the future relationships from nodes in the complex network based on the observed network structure and node attributes.…”
Section: Introductionmentioning
confidence: 99%