Long non-coding RNAs (lncRNAs) could regulate growth and metastasis of hepatocellular carcinoma (HCC). In this study, we aimed to investigate the mechanism of lncRNA F11-AS1 in hepatitis B virus (HBV)-related HCC. The relation of lncRNA F11-AS1 expression in HBV-related HCC tissues to prognosis was analysed in silico. Stably HBVexpressing HepG2.2.15 cells were established to explore the regulation of lncRNA F11-AS1 by HBx protein, as well as to study the effects of overexpressed lncRNA F11-AS1 on proliferation, migration, invasion and apoptosis in vitro. Subsequently, the underlying interactions and roles of lncRNA F11-AS1/miR-211-5p/NR1I3 axis in HBV-related HCC were investigated. Additionally, the influence of lncRNA F11-AS1 and miR-211-5p on tumour growth and metastasis capacity of HepG2.2.15 cells were studied on tumour-bearing nude mice. Poor expression of lncRNA F11-AS1 was correlated with poor prognosis in patients with HBV-related HCC, and its down-regulation was caused by the HBx protein. lncRNA F11-AS1 was proved to up-regulate the NR1I3 expression by binding to miR-211-5p. Overexpression of lncRNA F11-AS1 reduced the proliferation, migration and invasion, yet induced apoptosis of HepG2.2.15 cells in vitro, which could be abolished by overexpression of miR-211-5p. Additionally, either lncRNA F11-AS1 overexpression or miR-211-5p inhibition attenuated the tumour growth and metastasis capacity of HepG2.2.15 cells in vivo. Collectively, lncRNA F11-AS1 acted as a modulator of miR-211-5p to positively regulate the expression of NR1I3, and the lncRNA F11-AS1/miR-211-5p/NR1I3 axis participated in HBV-related HCC progression via interference with the cellular physiology of HCC. K E Y W O R D S hepatitis B virus, hepatocellular carcinoma, long non-coding RNA F11-antisense 1, microRNA-211-5p, nuclear receptor constitutive androstane receptor | 1849 DENG Et al.