Since the advent of mechanically interlocked molecules (MIMs), many approaches to templating their formation using various different noncovalent bonding interactions have been introduced and explored. In particular, employing radical-pairing interactions between BIPY(.+) units, the radical cationic state of 4,4'-bipyridinium (BIPY(2+) ) units, in syntheses is not only a convenient but also an attractive source of templation because of the unique properties residing in the resulting catenanes and rotaxanes. Herein, we report a copper-mediated procedure that enables the generation, in the MIM-precursors, of BIPY(.+) radical cations, while the metal itself, which is oxidized to Cu(I) , catalyzes the azide-alkyne cycloaddition reactions that result in the efficient syntheses of two catenanes and one rotaxane, assisted by radical-pairing interactions between the BIPY(.+) radical cations. This procedure not only provides a fillip for making and investigating the properties of Coulombically challenged catenanes and rotaxanes, but it also opens up the possibility of synthesizing artificial molecular machines which operate away from equilibrium.