The subject of this study is Vacuum Insulated Glass (VIG) panels, which consist of two glass panes with an evacuated space and evenly distributed micro-support pillars between them. The deflection of panes towards the centre of the structure caused by atmospheric pressure is a mechanical problem that occurs in this type of structure. The aim of this study was to extend previous research on the optimal arrangement of support pillars in terms of eigenfrequencies and dynamics to include aesthetic aspects. Using Abaqus/CAE v2017 software, a large number of numerical models were created and subjected to a comprehensive multi-criteria analysis. Fractal analysis was employed to automatically assess the aesthetics of the proposed solutions. The study presents theoretical solutions that could be implemented in industrial production. The presented study shows that it is possible to effectively extend the criteria for optimizing the arrangement of pillars with new design criteria. Most studies focus on pillar placement, amount, or shape in terms of panes thermal or mechanical properties. Due to the increasing number of VIG panels applications in places exposed to external vibrations, other design criteria for VIG panels are also required and are provided by the following study.