Basic equations of the dynamical scattering theory in momentum space have been considered in the two-beam approximation for single crystals containing randomly distributed microdefects commensurable with extinction length. The amplitudes of coherent and diffusely scattered waves inside the crystal have been found by using the perturbation theory with average and fluctuating parts of crystal polarizability as small parameters. In the complex dispersion corrections to the wave vectors of coherent and diffuse waves, the imaginary parts of which describe the attenuation of these waves due to diffuse scattering, the dynamical effects in diffuse scattering and their dependences on the incidence angle have been taken into account. These corrections also take account of the influence of any multiple diffuse scattering processes. The coherent component of crystal reflectivity has been calculated in the approximation of semiinfinite crystal for an arbitrary diffraction geometry.Osnovnye uravneni¾ dinamiqeskoj teorii rasse¾ni¾ v impul#snom prostranstve rassmotreny v dvuhvolnovom pribliwenii dl¾ monokristallov, soderwa §ih sluqajno raspredelennye mikrodefekty s radiusami por¾dka +kstinkcionnoj dliny. Amplitudy kogerentnyh i diffuzno rasse¾nnyh voln vnutri kristalla najdeny s ispol#zovaniem teorii vozmu §enij so srednej i fluktuacionnoj qast¾mi pol¾rizuemosti krustalla v kaqestve malyh parametrov. V kompleksnyh dispersionnyh popravkah k volnovym vektoram kogerentnyh i diffuznyh voln, mnimye qasti kotoryh opisyvaˇt zatuhanie +tih voln iz-za diffiznogo rasse¾ni¾, uqteny dinamiqeskie +ffekty v diffuznom rasse¾nii i ih zavisimost# ot ugla padeni¾. *ti popravki uqityvaˇt takwe vli¾nie lˇbyh mnogokratnyh processov diffuznogo rasse¾ni¾. Kogerentna¾ komponenta otrawatel#noj sposobnosti kristalla vyqislena v pribliwenii polubeskoneqnogo kristalla dl¾ proizvol#noj geometrii difrakcii.