The eruptions of Campi Flegrei (Southern Italy), one of the most studied and dangerous active volcanic areas of the world, are fed by mildly potassic alkaline magmas, from shoshonite to trachyte and phonotrachyte. Petrological investigations carried out in past decades on Campi Flegrei rocks provide crucial information for understanding differentiation processes in its magmatic system. However, the compositional features of rocks are a palimpsest of many processes acting over timescales of 100â104 years, including crystal entrapment from multiple reservoirs with different magmatic histories. In this work, olivine, clinopyroxene and feldspar crystals from volcanic rocks related to the entire period of Campi Flegreiâs volcanic activity are checked for equilibrium with combined and possibly more rigorous tests than those commonly used in previous works (e.g., FeâMg exchange between either olivine or clinopyroxene and melt), with the aim of obtaining more robust geothermobarometric estimations for the magmas these products represent. We applied several combinations of equilibrium tests and geothermometric and geobarometric methods to a suite of rocks and related minerals spanning the period from ~59 ka to 1538 A.D. and compared the obtained results with the inferred magma storage conditions estimated in previous works through different methods. This mineral-chemistry investigation suggests that two prevalent sets of TâP (temperatureâpressure) conditions, here referred to as âmagmatic environmentsâ, characterized the magma storage over the entire period of Campi Flegrei activity investigated here. These magmatic environments are ascribable to either mafic or differentiated magmas, stationing in deep and shallow reservoirs, respectively, which interacted frequently, mostly during the last 12 ka of activity. In fact, open-system magmatic processes (mixing/mingling, crustal contamination, CO2 flushing) hypothesized to have occurred before several Campi Flegrei eruptions could have removed earlier-grown crystals from their equilibrium melts. Moreover, our new results indicate that, in the case of complex systems such as Campi Flegreiâs, in which different pre-eruptive processes can modify the equilibrium composition of the crystals, one single geothermobarometric method offers little chance to constrain the magma storage conditions. Conversely, combined methods yield more robust results in agreement with estimates obtained in previous independent studies based on both petrological and geophysical methods.