Graphene oxide (GO) can improve the degradation resistance of biomedical Mg alloy because of its excellent impermeability and outstanding chemical inertness. However, the weak interfacial bonding between GO and Mg matrix leads to easily detaching during degradation. In this study, in situ reaction induced by TiO 2 took place in the AZ61−GO biocomposite to enhance the interfacial bonding between GO and Mg matrix. For the specific process, TiO 2 was uniformly and tightly deposited onto the GO surface by hydrothermal reaction (TiO 2 /GO) first and then used for fabricating AZ61−TiO 2 /GO biocomposites by selective laser melting (SLM). Results showed that TiO 2 was in situ reduced by magnesiothermic reaction during SLM process, and the reduzate Ti, on the one hand, reacted with Al in the AZ61 matrix to form TiAl 2 and, on the other hand, reacted with GO to form TiC at the AZ61−GO interface. Owing to the enhanced interfacial bonding, the AZ61−TiO 2 /GO biocomposite showed 12.5% decrease in degradation rate and 10.1% increase in compressive strength as compared with the AZ61−GO biocomposite. Moreover, the AZ61− TiO 2 /GO biocomposite also showed good cytocompatibility because of the slowed degradation. These findings may provide guidance for the interfacial enhancement in GO/metal composites for biomedical applications.