We describe an algorithm for suppression of stimulation artifacts in extracellular micro-electrode array (MEA) recordings. A model of the artifact based on locally fitted cubic polynomials is subtracted from the recording, yielding a flat baseline amenable to spike detection by voltage thresholding. The algorithm, SALPA, reduces the period after stimulation during which action potentials cannot be detected by an order of magnitude, to less than 2 ms. Our implementation is fast enough to process 60-channel data sampled at 25 kHz in real-time on an inexpensive desktop PC. It performs well on a wide range of artifact shapes without re-tuning any parameters, because it accounts for amplifier saturation explicitly and uses a statistic to verify successful artifact suppression immediately after the amplifiers become operational. We demonstrate the algorithm's effectiveness on recordings from dense monolayer cultures of cortical neurons obtained from rat embryos. SALPA opens up a previously inaccessible window for studying transient neural oscillations and precisely timed dynamics in short-latency responses to electric stimulation.