Graphene nanoplatelet reinforced semi‐crystal poly(arylene ether nitrile) (PEN/GN) nanocomposites were prepared by an economically and environmentally friendly method of twin‐screw extrusion technique. The feasibility of using PEN/GN nanocomposites was investigated by evaluating their thermal behaviors, mechanical, and morphological properties. Thermal studies revealed that GN could act as nucleating agents but decreased the whole crystallinity in/of PEN/GN nanocomposites. Mechanical investigation manifested that GN had both strengthening effect (increase in flexural modulus and strength) and toughening effect (rise in the elongation and impact strength) on the mechanical performance of semi‐crystal PEN nanocomposites. Heat treatment can further increase their mechanical performances due to the increased crystallinity and release of inner stress. With the small addition of GN (<5 wt%), the morphology of PEN was changed from brittle to ductile, and GN showed good dispersion and adhesion in/to the PEN matrix. This work shows that in the semi‐crystal polymer/filler systems, besides the dispersion states of fillers and interactions between fillers and polymer matrices, the crystallinity of the nanocomposites affected by the existence of filler and the residual stress are also two key factors determining the mechanical properties. POLYM. COMPOS., 35:404–411, 2014. © 2013 Society of Plastics Engineers