We present a convenient three‐step synthesis of amino substituted phosphazenyl phosphines of the general formula (R2N)3P=N–P(NR2)2 [NR2 = N(CH2)4, N(CH2)5, N(CH2)6]. These easily accessible mixed valent compounds display a surprisingly high proton affinity and basicity in the same range as the corresponding Schwesinger diphosphazene (Me2N)3P=N–P=NEt(NMe2)2 (Et‐P2) and Verkade's proazaphosphatrane superbases. Within the central [PIII–N=PV] scaffold, the phosphine PIII and not the phosphazene NIII atom is the center of highest proton affinity, basicity and donor strength. As P‐bases, the title compounds display calculated proton affinities between 265.8 (NR2 = NMe2) and 274.7 kcal·mol–1 [NR2 = N(CH2)4] and pKBH+ values between 26.4 (NR2 = NMe2) and 31.5 [NR2 = N(CH2)4] on the acetonitrile scale. As P‐nucleophiles, they are key intermediates in the synthesis of hyperbasic bis(diphosphazene) proton sponges, chiral bis(diphosphazene) proton pincers, bisphosphazides, and superbasic P2‐bisylides. Their Staudinger reactions as nucleophile towards 1,8‐diazidonaphthalene leading to 1,8‐naphthalene‐bisphosphazides is described in detail. The donor strength of the title compounds towards fragments [Se] and [Ni(CO)3] is in the same range as that of N‐heterocyclic carbenes.