The relationship between soil properties may vary with their spatial separation. Understanding this relationship is important in predicting hydraulic parameters from other soil physical properties. The objective of this study was to identify spatially dependent relationships between hydraulic parameters and soil physical properties. Regularly spaced (3-m) undisturbed soil samples were collected along a 384 m transect from a farm field at Smeaton, Saskatchewan. Saturated hydraulic conductivity, the soil water retention curve, and soil physical properties were measured. The scaling parameter, van Genuchten scaling parameter α (VGα), and curve shape parameter, van Genuchten curve shape parameter n (VGn), were obtained by fitting the van Genuchten model to measured soil moisture retention data. Results showed that the semivariograms of soil properties exhibited two different spatial structures at spatial separations of 20 and 120 m, respectively. A strong spatial structure was observed in organic carbon, saturated hydraulic conductivity (Ks), sand, and silt; whereas a weak structure was found for VGα and VGn. Correlation circle analysis showed strong spatially dependent relationships of Ks and VGα; with soil physical properties, but weak relationships of θs and VGn with soil physical properties. The spatially dependent relationships between soil physical and soil hydraulic parameters should be taken into consideration when developing pedotransfer functions. Key words: Spatial relationship, geostatistics, linear coregionalization model, principal component analysis, pedotransfer function