Abstract:In this paper, a scheme is presented for fusing a foot-mounted Inertial Measurement Unit (IMU) and a floor map to provide ubiquitous positioning in a number of settings, such as in a supermarket as a shopping guide, in a fire emergency service for navigation, or with a hospital patient to be tracked. First, several Zero-Velocity Detection (ZDET) algorithms are compared and discussed when used in the static detection of a pedestrian. By introducing information on the Zero Velocity of the pedestrian, fused with a magnetometer measurement, an improved Pedestrian Dead Reckoning (PDR) model is developed to constrain the accumulating errors associated with the PDR positioning. Second, a Correlation Matching Algorithm based on map projection (CMAP) is presented, and a zone division of a floor map is demonstrated for fusion of the PDR algorithm. Finally, in order to use the dynamic characteristics of a pedestrian's trajectory, the Adaptive Unscented Kalman Filter (A-UKF) is applied to tightly integrate the IMU, magnetometers and floor map for ubiquitous positioning. The results of a field experiment performed on the fourth floor of the
2639School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirm that the proposed scheme can reliably achieve meter-level positioning.