Objective: Exposure to carbon tetrachloride leads to serious liver injury and fibrosis. This study was aimed to evaluate the hepatoprotective effects of hesperidin against carbon tetrachloride (CCl4)-induced liver fibrosis in rats compared with the reference drug silymarin.Methods: Wistar albino rats were divided into five groups, each of eight rats. Animals were allocated into a control group, corn oil group and fibrosis control group. The remaining two groups received in addition to CCl4, silymarin (100 mg/kg/d) as a reference treatment and hesperidin (200 mg/kg/d). At the end of experimental period, the biomarkers of specific fibrosis [hepatic transforming growth factor β1 (TGF-β1) and hydroxyproline (HYP)], liver function [serum alanine transaminase (ALT), aspartate transaminase (AST), albumin and total bilirubin], oxidative stress [hepatic malondialdehyde (MDA), glutathione (GSH) and catalase (CAT)], inflammatory [hepatic myeloperoxidase (MPO), serum tumor necrosis factor alpha (TNF-α)], relative liver weight, lipid profile [total cholesterol, serum triglycerides, high-density lipoprotein cholesterol (HDLCh) and low density lipoprotein cholesterol (LDL-Ch)] were evaluated, supported by liver histopathological study and immunohistochemistry of alpha-smooth muscle actin (α-SMA) in liver sections.Results: Hesperidin significantly decreased hepatic transforming growth factor β1, hydroxyproline, the serum liver function markers of ALT, AST and total bilirubin, the hepatic content of MDA and MPO activity, the serum pro-inflammatory cytokine TNF-α, relative liver weight, and the serum lipid profile markers cholesterol, triglycerides and LDL. On the other hand, Hesperidin significantly increased albumin, the hepatic content of GSH and CAT, and serum lipid profile of LDL. In addition, liver sections obtained from these groups showed marked histopathological and immunohistochemistry of α-SMA improvement.
Conclusion:Hesperidin may be promising protective agent against liver fibrosis through improvement of liver function, modulation of the fibrous scar formation, anti-inflammatory and antioxidant potentials.