Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because selfmaintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the 'maintenance costs' of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait.Keywords: standard metabolic rate; resting metabolic rate; basal metabolic rate; maternal effects; metabolism; energetics
INTRODUCTIONThe energy cost of self-maintenance (when measured as minimal rates of energy metabolism) varies remarkably within species. It effectively forms a central component of life-history theory which concerns how individuals must allocate a finite-energy budget among the competing interests of growth, reproduction and self-maintenance [1]. Compulsory trade-offs among these functions mean that variation in the rate of using energy will probably have implications for life-history traits and hence fitness. Consequently, there is great contemporary interest in amongindividual variation in minimal rates of energy metabolism. In this review, we address two issues: (i) why do some individuals consistently have two or three times the maintenance costs of conspecifics of the same size, age and sex; and (ii) what are the consequences for fitness? For our purposes, the 'baseline' measures of energy metabolism-basal, standard and resting metabolic rate (BMR, SMR and RMR, respectively) are most relevant. When measured on quiescent individuals, at a common temperature and corrected for body mass, these estimate the compulsory energy cost of self-maintenance that is central to life-history theory. The definitions of each vary slightly. SMR is the lowest rate of metabolism, measured at a