A Silicon Photonics modulator is a high-speed photonic integrated circuit for optical data transmission in high-capacity optical networks. Silicon Photonics modulators in the configuration of a Mach–Zehnder interferometer, in which a PN-junction rib-waveguide phase shifter is inserted in each arm of the interferometer, are studied in this paper because of their superior performance of high-quality optical data generation in a wide range of spectral bands and their simplicity in fabrication processes suitable to production in foundries. Design, fabrication, and fundamental characteristics of Silicon Photonics Mach–Zehnder modulators are reviewed as an introduction to these high-speed PICs on the Silicon Photonics platform. Modulation speed, or modulation bandwidth, is a key performance item, as well as optical loss, in the application to high-speed optical transmitters. Limiting factors on modulation speed are addressed in equations. Electrical resistance–capacitance coupling, which causes optical modulation bandwidth–optical loss trade-off, is the most challenging limiting factor that limits high-speed modulation. Expansion of modulation bandwidth is not possible without increasing optical loss in the conventional approaches. A new idea including quantum-mechanical effect in the design of Silicon Photonics modulators is proposed and proved in computational analysis to resolve the bandwidth loss trade-off. By adding high-mobility quantum-well overlayers to the side slab wings of the rib-waveguide phase shifter, the modulation bandwidth is doubled without increasing optical loss to achieve a 200 Gbaud modulation rate.