Streaming applications often have latency and throughput requirements due to timing critical signal processing, or the time critical interaction with their environment. Mapping such applications to a multi-core architecture is commonly done at design-time to be able to analyze the complex design-space. However, such design-flows cannot deal with a dynamic platform or a dynamic set of applications. Hardware faults and resources claimed by other applications may render the assumed available resources inaccessible. To avoid the assumptions posed on the state of the platform by a fixed resource allocation, applications should be designed with location transparency in mind. Applications must be analyzed at design-time to determine the required resource budget, independent of which specific resources will be allocated. Sufficient performance can be guaranteed when such applications are mapped onto an architecture in which each resource is arbitrated using a budget scheduler.Within the Cutting edge Reconfigurable ICs for Stream Processing (CRISP) project, a many-core platform is developed that adheres to these requirements. Using the configuration features of the platform, the system is able to control at run-time what resources are being used by the applications. This paper shows that run-time resource allocation can effectively adapt to the available set of resources, providing partial distribution transparency to the user. As an example, a GNSS receiver is mapped to the platform containing faulty hardware components. A few resources remain critical, but in most cases the faulty components can be circumvented, such that adequate resources can be allocated to the application at run-time.