A rapid and highly selective potentiometric method for the simultaneous analysis of peracetic acid (PAA) and hydrogen peroxide (H2O2) has been proposed, for the first time, using glassy carbon (GC) as an indicator electrode and I2/I- potential buffer. On the basis of the large difference in the reaction rates of PAA and H2O2 with I-, which was confirmed using stopped-flow spectrophotometry, a transient potential response corresponding to the reactions of the two species with I- was observed. The response times were typically a few seconds and several minutes for PAA and H2O2, respectively. The effects of the concentrations of molybdate catalyst, H+, I2, and I- in the potential buffer on the selectivity as well as the sensitivity were examined. The potential response obtained using the GC indicator electrode was found to be Nernstian over a wide range of their concentrations (typically from micromolar to millimolar) with slopes of 30.5 and 29.5 mV for PAA and H2O2, respectively (in close agreement with the theoretical value, that is, 29.6 mV). O2 was found to have no substantial effect on the potential change at the GC electrode in the present potential buffer.