For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSSP) preconditioner as well as the MGSSP iteration method are derived in this paper, which generalize the MSSP preconditioner and the MSSP iteration method newly developed by Huang and Su (J. Comput. Appl. Math. 2017), respectively. The convergent and semi-convergent analysis of the MGSSP iteration method are presented, and we prove that this method is unconditionally convergent and semi-convergent. In addition, some spectral properties of the preconditioned matrix are carefully analyzed. Numerical results demonstrate the robustness and effectiveness of the MGSSP preconditioner and the MGSSP iteration method, and also illustrate that the MGSSP iteration method outperforms the GSS and GMSS iteration methods, and the MGSSP preconditioner is superior to the shift-splitting (SS), generalized SS (GSS), modified SS (MSS) and generalized MSS (GMSS) preconditioners for the GMRES method for solving the nonsymmetric saddle point problems.for the saddle point problem (1), where α is a positive constant and I is the identity matrix.where α ≥ 0, β > 0 and I is the identity matrix. It is easy to see that P SS is a special case of P GSS when α = β. Numerical results in [21,20] confirmed that the GSS preconditioner is superior to the SS preconditioner.