In this study, highly photoluminescent and photocatalytic Fe2O3@carbon quantum dots/graphene oxide nanostructures were synthesized using ball milling‐assisted hydrothermal synthesis with hard pistachio shells. Different analyses, such as X‐ray diffraction, energy dispersive X‐ray spectroscopy, and Fourier transform infrared spectroscopy were used to study the product structure. Scanning electron microscopy and transmission electron microscopy images were used to study product size and morphology. Optical properties of the as‐synthesized nanomaterials were investigated using ultraviolet–visible light and photoluminescence analyses. To increase photoluminescence intensity, ethylene diamine tetraacetic acid, polyethylene glycol, polyvinylpyrrolidone, and acetylacetonate anions were used to modify the product surface. Thermal stability of the product was studied using thermal gravimetric analysis. Finally, photocatalytic activity and surface adsorption of the product were investigated; the produce was found to be highly photoluminescent with high photocatalytic and surface activities.