There is paucity of data on the performance of different improvised materials to cope with the COVID-19 pandemic. The goal of this study is to evaluate the filtration efficiency and breathability of improvised filtration and commonly available mask materials, as well as to assess their reusability. Materials readily available to the general public such as cotton, fragrance and additive-free dry baby cleaning wipes, and those abundantly available in the hospital setting, such as sterilization wraps, were chosen for testing, amongst others. In the COVID-important 2–5 m particle range, two-layers of cotton provided filtration efficiency between 34%–66%. Amongst potential filter materials, 300-weight sterilization wraps provided approximately 80% filtration efficiency and are readily available in the healthcare setting. The addition of sterilization wrap to cotton fabrics brought the filtration efficiency to above that of the sterilization wrap (80%-90%) at the expense of added pressure drop. Four-layers of dry baby wipes performed very well with a filtration efficiency of 85% and a reasonable pressure drop (1/3 of procedure mask). Since the material is advertised as pure spunlace polypropylene and designed to contact the skin during cleaning, it would appear generally safe as a filter insert. Of improvised filters, polypropylene electrostatic HVAC filters performed the best with filtration efficiencies of >99%, but are not recommended due to the risk of confusion with glass-based HVAC filters and uncertainty regarding trace materials used in the filter. The filtration efficiency of two-layers of cotton fabrics with one-layer of sterilization wrap slightly improved over 10 laundry cycles, while the performance of other non-wovens, like dry baby wipes, degraded more rapidly and should be considered disposable. In summary, we found that a two-layer cotton fabric can provide a comfortable, breathable and reusable option. The addition of a sterilization wrap or four-layers of pure spunlace fragrance free dry baby wipes can significantly improve filtration and block expiratory aerosols at the expense of an added pressure drop.