Path planning is the core technology of mobile robot decision-making and control and is also a research hotspot in the field of artificial intelligence. Aiming at the problems of slow response speed, long planning path, unsafe factors, and a large number of turns in the conventional path planning algorithm, an improved multiobjective genetic algorithm (IMGA) is proposed to solve static global path planning in this paper. The algorithm uses a heuristic median insertion method to establish the initial population, which improves the feasibility of the initial path and generates a multiobjective fitness function based on three indicators: path length, path security, and path energy consumption, to ensure the quality of the planned path. Then, the selection, crossover, and mutation operators are designed by using the layered method, the single-point crossover method, and the eight-neighborhood-domain single-point mutation method, respectively. Finally, the delete operation is added, to further ensure the efficient operation of the mobile robot. Simulation experiments in the grid environment show that the algorithm can improve the defects of the traditional genetic algorithm (GA), such as slow convergence speed and easy to fall into local optimum. Compared with GA, the optimal path length obtained by planning is shortened by 17%.