In this study, two new mesoporous hybrid gels were synthesized. The structural order, morphology, and textural properties of the prepared hybrid materials have been studied by 13 C CP MAS NMR, SEM, FTIR, and nitrogen adsorption-desorption analysis. The application for the heavy metal uptake from aqueous solution using the as-synthesized hybrid materials as an adsorbent is explored. Operating parameters influencing the adsorption procedure, for instance, solution pH, contact time, and temperature are contemplated. In order to gain an insight into the adsorption mechanism and reveal the rate-controlling steps, three models pseudo-first-order, pseudo-second-order, and intra-particle diffusion have been studied to fit. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models are assigned to portray the adsorption isotherms. Besides, the feasibility of the synthesized adsorbents for a continuous process in fixed-bed column was investigated. Prior tests produced on electroplating effluents reveal that the as-prepared xerogel could be strongly used for the heavy metal uptake from real wastewater.