2020
DOI: 10.21107/simantec.v7i2.6551
|View full text |Cite
|
Sign up to set email alerts
|

Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
12
0
5

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 22 publications
(17 citation statements)
references
References 0 publications
0
12
0
5
Order By: Relevance
“…Penelitian terkait lainnya yang pernah dilakukan oleh Wahyudi Setiawan seperti klasifikasi citra fundus [12]. Citra uji coba menggunakan fundus retina.…”
Section: Pendahuluanunclassified
“…Penelitian terkait lainnya yang pernah dilakukan oleh Wahyudi Setiawan seperti klasifikasi citra fundus [12]. Citra uji coba menggunakan fundus retina.…”
Section: Pendahuluanunclassified
“…Then, training is carried out using feed forward and backpropagation methods. The architecture of CNN is divided into two major parts, namely the Feature Extraction Layer and the Fully-Connected Layer (MLP) (Setiawan, 2019). The following is an illustration of the CNN architecture which can be seen in Figure 1 below.…”
Section: ( ) ( ) ( ) ∫ ( ) ( )mentioning
confidence: 99%
“…Where the last number of this architecture represents the number of layers in the network. RESNET stands for Residual Network which is an artificial neural network innovation that won the 2015 ILSVRC classification competition with an error rate of only 3.15% [15]. While VGG-16 stands for Visual Geometry Group and 16 is the number of layers.…”
Section: Convolutional Neural Networkmentioning
confidence: 99%