2013
DOI: 10.1007/978-3-319-03524-6_31
|View full text |Cite
|
Sign up to set email alerts
|

Personality-Based Active Learning for Collaborative Filtering Recommender Systems

Abstract: Abstract. Recommender systems (RSs) suffer from the cold-start or new user/item problem, i.e., the impossibility to provide a new user with accurate recommendations or to recommend new items. Active learning (AL) addresses this problem by actively selecting items to be presented to the user in order to acquire her ratings and hence improve the output of the RS. In this paper, we propose a novel AL approach that exploits the user's personality -using the Five Factor Model (FFM) -in order to identify the items t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
55
0
4

Year Published

2014
2014
2019
2019

Publication Types

Select...
6
2
1

Relationship

2
7

Authors

Journals

citations
Cited by 81 publications
(65 citation statements)
references
References 20 publications
0
55
0
4
Order By: Relevance
“…Uma vez que os EA podem ser considerados um componente da personalidade de um indivíduo [Klašnja-Milićević et al 2017], é conveniente citar que há estudos com resultados indicando maior eficácia e lealdade dos usuários em sistemas baseados em personalidade do que em sistemas não baseados em personalidade [Hu e Pu 2011 apud Roshchina 2012] [Elahi et al 2013] [Xia et al 2014].…”
Section: Referencial Teóricounclassified
“…Uma vez que os EA podem ser considerados um componente da personalidade de um indivíduo [Klašnja-Milićević et al 2017], é conveniente citar que há estudos com resultados indicando maior eficácia e lealdade dos usuários em sistemas baseados em personalidade do que em sistemas não baseados em personalidade [Hu e Pu 2011 apud Roshchina 2012] [Elahi et al 2013] [Xia et al 2014].…”
Section: Referencial Teóricounclassified
“…Elahi et al [23] propose the enrichment of a variety of active learning techniques with personality data. The process of active learning involves the step of gathering preliminary information and the learning phase itself that involves classification of properties and recognition of patterns.…”
Section: Personality-based Recommender Systemsmentioning
confidence: 99%
“…Personality has been gaining popularity in research on personalized services. It has been used to alleviate the coldstart problem in recommender systems [4,15]. Research has been carried out to understand how personality relates to user preferences in multiple domains [1].…”
Section: Related Workmentioning
confidence: 99%