In this study, polyaniline (PANI) is prepared by means of chemical oxidization polymerization and directly loaded on the modified fiber ball (m-FB) to obtain macroscale polyaniline/modified fiber ball (PANI/m-FB) composite, and then its removal ability of Cr(VI) is investigated. The effects of different parameters such as contact time, pH value and initial concentration on Cr(VI) removal efficiency are discussed. The experimental results illustrate that the favorable pH value is 5.0 and the maximum removal capacity is measured to be 293.13 mg g−1. Besides, PANI/m-FB composites can be regenerated and reused after being treated with strong acid. The kinetic study indicates that the adsorption procedure is mainly controlled by chemical adsorption. More importantly, the macroscale of composites can avoid secondary pollution efficiently. Benefiting from the low cost, easy preparation in large scale, environmentally friendly, excellent recycling performance as well as high removal ability, PANI/m-FB composites exhibit a potential possibility to remove Cr(VI) from industrial waste water.
Graphic Abstract
The polyaniline (PANI) was coated on modified fiber ball (m-FB) to remove Cr(VI) in waste water, and this kind of PANI/m-FB composites can avoid secondary pollution efficiently due to its macrostructure. Furthermore, the removal capacity can reach to 291.13 mg/g and can be multiple reused.