Polylactide or poly(l-lactic acid) (PLA) is a commercially promising material for use as a renewable and biodegradable plastic. Three novel PLA-degrading enzymes, named PLAase I, II and III, were purified to homogeneity from the culture supernatant of an effective PLA-degrading bacterium, Amycolatopsis orientalis ssp. orientalis. The molecular masses of these three PLAases as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 24.0, 19.5 and 18.0 kDa, with the pH optima being 9.5, 10.5 and 9.5, respectively. The optimal temperature for the enzyme activities was 50-60 degrees C. All the purified enzymes could degrade high-molecular-weight PLA film as well as casein, and the PLA-degrading activities were strongly inhibited by serine protease inhibitors such as phenylmethylsulfonyl fluoride and aprotinin, but were not susceptive to chymostatin and pepstatin. Taken together, these data demonstrated that A. orientalis ssp. orientalis produces multiple serine-like proteases to utilize extracellular polylactide as a sole carbon source.