The increased demand for cement mortar due to rapid infrastructural growth and development has led to an alarming depletion of fine aggregate. This has prompted the need for a more sustainable material as a total/partial replacement for natural fine aggregate. This study proposes the use of tin slag (TS) as a replacement for fine aggregate in concrete to bridge this sustainability gap. TS was used to replace fine aggregate at replacement levels of 0%, 25%, 50%, 75%, and 100% in cement mortar. Fresh and hardened properties of TS mortar were obtained. Flow tests showed that, as the TS quantity and the w/c ratio increased, the mortar flow increased. Similarly, the compressive strength increased as the TS replacement increased up to 50% replacement, after which a decline in strength was observed. However, with the TS replacement of fine aggregate up to 100%, a compressive strength of 6% above control was attained. The morphological features confirm that specimens with TS had a denser microstructure because of its shape characteristics (elongated, irregular, and rough), and, thus, plugged holes better than the control mortar. The natural sand’s contribution to strength was a result of better aggregate hardness as compared to TS. Hence, TS can be used as alternative for fine aggregate in sustainable construction.