Summary. The absorption of cholesterol has been studied in man by perfusing the upper jejunum with a micellar solution of bile salt, 1-monoglyceride, and cholesterol-14C, with a triple lumen tube with collection sites 50 cm apart. The absorption of micellar components between the collection sites was calculated from their concentration changes relative to those of the watersoluble marker, polyethylene glycol. Control experiments were performed with cholesterol-free perfusions of saline or bile salt-monoglyceride solutions. Steady state conditions were obtained.Each of the components of the micelle was absorbed to a different extent during passage through the test segment of jejunum. Bile salt was not absorbed (mean, -3%), but micellar monoglyceride was rapidly hydrolyzed and absorbed almost completely (mean, 98%). Cholesterol radioactivity was absorbed to an intermediate extent (mean, 73%), and the absorption of chemically determined cholesterol (mean, 46%) indicated that much of the disappearance of radioactivity represented true absorption and not simple exchange.The specific activity of the perfused cholesterol fell during passage through the loop. This fall was interpreted as signifying the continuous addition of nonradioactive endogenous cholesterol by the test segment. However, the decrease in specific activity may also be considered to signify exchange, in that nonradioactive molecules entered the lumen as radioactive molecules were absorbed. Plant sterols appeared in the intestinal contents during the perfusion and must have been contributed by the perfused segment.The perfusate and samples taken from the upper and lower collection sites were examined by ultracentrifugation to define the physical state of cholesterol. It was found that cholesterol in the perfusate or upper collection site samples did not sediment, but that 23% of the cholesterol in the lower collection site samples was sedimentable (mean of three experiments); bile salt, as control, was not sedimentable. Solubility experiments in model systems showed that cholesterol possessed low solubility in bile salt solution; its solubility increased markedly and in linear proportion to the amount of