This paper considers the fair access problem in vehicular ad hoc networks and develops analytical models for analyzing the performance of an IEEE 802.11 distributed coordination function based fair channel access protocol in a non-saturated state. We first derive the relationship between the transmission probability and the minimum contention window size of a vehicle, and the relationship between the velocity and the minimum contention window size of a vehicle in a non-saturated state. Based on the analytical model, the minimum contention window size of a vehicle for a given velocity can be determined in order to achieve fair access among different vehicles. Moreover, an analytical model is also developed for analyzing the throughput performance of the fair channel access protocol in a non-saturated state. The effectiveness of the analytical models is justified through simulation results.