2006
DOI: 10.1016/j.ansens.2005.11.003
|View full text |Cite
|
Sign up to set email alerts
|

Quasi-morphismes et invariant de Calabi

Abstract: In this paper, we give two elementary constructions of homogeneous quasi-morphisms defined on the group of Hamiltonian diffeomorphisms of certain closed connected symplectic manifolds (or on its universal cover). The first quasi-morphism, denoted by $\calabi\_{S}$, is defined on the group of Hamiltonian diffeomorphisms of a closed oriented surface $S$ of genus greater than 1. This construction is motivated by a question of M. Entov and L. Polterovich. If $U\subset S$ is a disk or an annulus, the restriction of… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
44
0
6

Year Published

2007
2007
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 39 publications
(51 citation statements)
references
References 16 publications
1
44
0
6
Order By: Relevance
“…Similar methods have been used in [9]. We can now state Py's second result [18]. Let F : M → R be a generic…”
Section: Essential Critical Pointsmentioning
confidence: 99%
See 3 more Smart Citations
“…Similar methods have been used in [9]. We can now state Py's second result [18]. Let F : M → R be a generic…”
Section: Essential Critical Pointsmentioning
confidence: 99%
“…In this paper we show this connection for a recently discovered, due to P. Py [18], Calabi quasi-morphism on orientable surfaces of higher genus. The proof relies on hyperbolic geometry tools, surprisingly combined with combinatorial tools such as Hall's marriage theorem.…”
Section: Introductionmentioning
confidence: 95%
See 2 more Smart Citations
“…В частно-сти, отсюда следует утверждение о существовании представлений, близких к данному почти представлению аменабельной локально компактной группы в сопряженном банаховом пространстве. Условия существования гомоморфиз-мов, близких к данному квазигомоморфизму, изучались также с 40-х годов с различных точек зрения в [3]- [18], [20]- [22], [28]- [39], [41], [47], [54], [63]- [116]. Родственным задачам, в том числе -разделяющим отображениям, посвящены статьи [40], [117]- [122].…”
unclassified