Davis JM, Murphy EA, Carmichael MD, Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol 296: R1071-R1077, 2009. First published February 11, 2009 doi:10.1152/ajpregu.90925.2008.-Quercetin is one of a broad group of natural polyphenolic flavonoid substances that are being investigated for their widespread health benefits. These benefits have generally been ascribed to its combination of antioxidant and anti-inflammatory activity, but recent in vitro evidence suggests that improved mitochondrial biogenesis could play an important role. In addition, the in vivo effects of quercetin on mitochondrial biogenesis exercise tolerance are unknown. We examined the effects of 7 days of quercetin feedings in mice on markers of mitochondrial biogenesis in skeletal muscle and brain, and on endurance exercise tolerance. Mice were randomly assigned to one of the following three treatment groups: placebo, 12.5 mg/kg quercetin, or 25 mg/kg quercetin. Following 7 days of treatment, mice were killed, and soleus muscle and brain were analyzed for mRNA expression of peroxisome proliferator-activated receptor-␥ coactivator (PGC-1␣) and sirtuin 1 (SIRT1), and mitochondrial DNA (mtDNA) and cytochrome c. Additional mice underwent a treadmill performance run to fatigue or were placed in voluntary activity wheel cages, and their voluntary activity (distance, time, and peak speed) was recorded. Quercetin increased mRNA expression of PGC-1␣ and SIRT1 (P Ͻ 0.05), mtDNA (P Ͻ 0.05) and cytochrome c concentration (P Ͻ 0.05). These changes in markers of mitochondrial biogenesis were associated with an increase in both maximal endurance capacity (P Ͻ 0.05) and voluntary wheel-running activity (P Ͻ 0.05). These benefits of querectin on fitness without exercise training may have important implications for enhancement of athletic and military performance and may also extend to prevention and/or treatment of chronic diseases. flavonoid; mitochondria; endurance capacity MITOCHONDRIAL DYSFUNCTION in peripheral tissues and brain plays an important role in the etiology of many diseases, including neurodegenerative disorders, cancer, diabetes, and cardiovascular myopathies, as well as the aging process and poor exercise tolerance (3,28,32). Although poor exercise tolerance is clearly a problem for athletes and military personnel, it is also a risk factor for development of these disorders (28). Exercise training is generally thought to be the best strategy to increase muscle mitochondria number and function, although little is known about the effect of exercise on brain mitochondria (20,27). Given the difficulty in maintaining a regular exercise program, other strategies involving nutrition and drugs have received increasing attention. Among the most effective are caloric restriction, natural flavonoids like resveratrol, and drugs that have been shown to increase mitochondrial biogenesis via an increase in the transcriptional coactivators sirtuin 1 (SIRT1) and peroxisome prol...