Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, known as coronavirus disease 2019 (COVID-19) causes cytokine release syndrome (CRS), leading to acute respiratory distress syndrome (ARDS), acute kidney and cardiac injury, liver dysfunction, and multiorgan failure. Although several studies have discussed the role of 5-lipoxygenase (5-LOX) in viral infections, such as influenzae and SARS, it remains unexplored in the pathophysiology of COVID-19. 5-LOX acts on free arachidonic acid (AA) to form proinflammatory leukotrienes (LTs). Of note, numerous cells involved with COVID-19 (e.g., inflammatory and smooth muscle cells, platelets, and vascular endothelium) widely express leukotriene receptors. Moreover, 5-LOX metabolites induce the release of cytokines (e.g., tumour necrosis factor-α [TNF-α], interleukin-1α , and interleukin-1β ) and express tissue factor on cell membranes and activate plasmin. Since macrophages, monocytes, neutrophils, and eosinophils can express lipoxygenases, activation of 5-LOX and the subsequent release of LTs may contribute to the severity of COVID-19. This review sheds light on the potential implications of 5-LOX in SARS-CoV-2-mediated infection and the anticipated therapeutic role of 5-LOX inhibitors.