Since the first studies in the mid-twentieth century, lightweight electronic tracking devices have been increasingly used to study waterfowl movements. With half a century of experience and growing sample sizes, it has become clear that the attachment of a tracking device can affect a bird's behaviour and fitness. This becomes problematic when it introduces uncertainty about whether the recorded data represent natural behaviour. Waterfowl may be particularly prone to tag effects, since many species are migratory and tracking devices can disrupt their waterproof plumage. The primary aim of this paper is to identify how tracking devices may affect waterfowl survival, migration and reproduction, and how better measuring and reporting of such effects can improve our understanding of the risks, providing a first step towards reducing their impact in future studies. We reviewed literature on electronic tracking of waterfowl to create an overview of currently recognized effects of harness-attached backpacks, implants, subcutaneous attachments and neck collars. Additionally, we analysed developments in the use of attachment methods, the weight of tracking devices relative to bird body mass, and the reporting rate of effects of tracking devices in 202 original tracking studies. We found that although the number of waterfowl tracking studies described in peer-reviewed literature has steeply increased over the past decades, reporting rates of potential effects have decreased from 65.0 to 26.5%. Meanwhile, the mean weight of the tracking devices relative to the bird's body mass remained stable around 2.0%. Major negative effects were reported in 17% of all studies and were found for all attachment methods. Overall, large differences exist in the occurrence and type of negative effects between species and studies, even if the same tracking methods were used. Inconsistent reporting of effects, lack of control groups to measure effects and incomplete descriptions of the methodology hamper the identification of factors contributing to these effects. To accomplish a reduction in adverse effects of tracking, it is necessary to improve the measuring and reporting of effects. We propose a framework for standardized reporting of methods in primary tracking studies and standardized protocols to measure effects of tracking devices on waterfowl.