2015
DOI: 10.1111/jifm.12029
|View full text |Cite
|
Sign up to set email alerts
|

Research and Development, Uncertainty, and Analysts’ Forecasts: The Case of IAS 38

Abstract: This study analyzes the consequences of the capitalization of development expenditures under IAS 38 on analysts' earnings forecasts. We use unique hand-collected data in a sample of highly research and development (R&D)-intensive German-listed firms over the period [2000][2001][2002][2003][2004][2005][2006][2007]. We find that the capitalization of development costs is significantly associated with both higher individual analysts' forecast errors and forecast dispersion. This suggests that the increasing compl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
12
1
12

Year Published

2015
2015
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 29 publications
(25 citation statements)
references
References 77 publications
0
12
1
12
Order By: Relevance
“…For an Italian sample, Prencipe et al (2008) and Markarian et al (2008) find that discretionary accounting for R&D is used as a tool for managing earnings, resulting in lower explanatory power of earnings. They attribute the negative coefficient on capitalized R&D to the fact that investors are concerned with, and react negatively to, capitalization of R&D. For a German sample, Dinh, Eierle, Steeger, and Schultze (2015) find that R&D capitalization under IAS 38 increases individual analyst forecast errors. For a US sample, Ciftci (2010) shows that the capitalization of software development under SFAS 86 (now ASC 350-40) reduces earnings quality.…”
Section: Randd Capitalization and Earnings Managementmentioning
confidence: 92%
“…For an Italian sample, Prencipe et al (2008) and Markarian et al (2008) find that discretionary accounting for R&D is used as a tool for managing earnings, resulting in lower explanatory power of earnings. They attribute the negative coefficient on capitalized R&D to the fact that investors are concerned with, and react negatively to, capitalization of R&D. For a German sample, Dinh, Eierle, Steeger, and Schultze (2015) find that R&D capitalization under IAS 38 increases individual analyst forecast errors. For a US sample, Ciftci (2010) shows that the capitalization of software development under SFAS 86 (now ASC 350-40) reduces earnings quality.…”
Section: Randd Capitalization and Earnings Managementmentioning
confidence: 92%
“…Ou seja, empresas com maior grau de intangibilidade atraem maior número de analistas em virtude do seu maior potencial de ganho, gerando um aumento de informações analisadas com maior habilidade pelos analistas, permitindo uma melhor avaliação e previsão destes. Destaca-se, também, que a discricionariedade envolvida na decisão de reconhecimento dos ativos intangíveis permite que os administradores sinalizem ao mercado suas perspectivas e, quanto maior a quantidade de sinalizações, maior será a quantidade de informações disponíveis aos analistas (Dinh et al, 2015).…”
Section: Acurácia Dos Analistas E Os Ativos Intangíveisunclassified
“…Em consonância com outros estudos (Dinh et al, 2015;Jia, 2017;Kwon, 2002;Matolcsy & Wyatt, 2006;Srinivasan, 2007), também será investigada a influência dos intangíveis sobre a dispersão das previsões dos analistas. Kwon (2002) e Matolcsy e Wyatt (2006) encontraram menor grau de dispersão em empresas com mais intangíveis, enquanto Dinh et al (2015) e Jia (2017) utilizaram a dispersão em seus trabalhos e concluíram que o investimento em intangíveis está significativamente associado a maiores níveis de dispersão das previsões. Srinivasan (2007) explica que tal métrica é de grande interesse para usuários internos e externos de empresas participantes do mercado de ações por refletir a variabilidade ex-ante do desempenho da empresa.…”
Section: Dispersão Das Previsões Dos Analistas E Os Ativos Intangíveisunclassified
See 1 more Smart Citation
“…Forecasts by financial analysts on R&D investments however, are prone to a multitude of biases due to the nature of their uncertainty (Palmon & Yezegel, 2012). R&D levels are usually negatively correlated to the level of consensus between analysts' perceptions on its future benefit (Chambers, 2011;Dinh, Eierle, Schultze become more effective with their assessment of R&D, forecast errors are still positively correlated to the level of R&D (Chambers et al, 2002).…”
Section: A Case For Randd Capitalizationmentioning
confidence: 99%