Kenaf (KNF)-filled polypropylene/waste tire dust (PP/WTD) composites containing different KNF loadings (0, 5, 10, 15, and 20 parts per hundred parts of resin (phr)) were prepared using a Thermo Haake Polydrive internal mixer. The influence of the KNF form (KNF short fiber (KNFs) and KNF powder (KNFp)) at different KNF loadings on properties of the composites was studied. Results showed that with increasing KNF loading, the stabilization torque, tensile modulus, water absorption, and thermal properties increased for both KNFp-and KNFs-filled PP/WTD composites. However, the tensile strength and elongation at break decreased by 29.2% and 53.9%, respectively, for KNFp-filled PP/WTD composites, whereas KNFs-filled PP/WTD composites showed a decrement of 24.5% and 63.5%, respectively. The stabilization torque, tensile strength, and tensile modulus increased by 22.4%, 6.7%, and 2.6%, respectively, for KNFs-filled PP/WTD composites at 20 phr KNF loading. The scanning electron microscopy morphological studies on the tensile fractured surfaces revealed poor adhesion between KNFp and PP/WTD matrices as compared to KNFs and PP/WTD matrices.