“…Ambiguity sets of special interest include the Markov ambiguity set containing all distributions with known mean and support [48], the Chebyshev ambiguity set containing all distributions with known bounds on the first and second-order moments [12,14,22,31,39,46,49,51,52], the Gauss ambiguity set containing all unimodal distributions from within the Chebyshev ambiguity set [38,41], various generalized Chebyshev ambiguity sets that specify asymmetric moments [12,13,35], higher-order moments [7,30,45] or marginal moments [17,18], the median-absolute deviation ambiguity set containing all symmetric distributions with known median and mean absolute deviation [24], the Huber ambiguity set containing all distributions with known upper bound on the expected Huber loss function [15,48], the Wasserstein ambiguity set containing all distributions that are close to the empirical distribution with respect to the Wasserstein metric [19,34,40], the KullbackLeibler divergence ambiguity set and likelihood ratio ambiguity set [10,26,27,31,47] containing all distributions that are sufficiently likely to have generated a given data set, the Hoeffding ambiguity set containing all component-wise independent distributions with a box support [3,8,10], the Bernstein ambiguity set containing all distributions from within the Hoeffding ambiguity set subject to marginal moment bounds [36], several φ-divergence-based ambiguity sets [2,…”