2010
DOI: 10.1117/12.845587
|View full text |Cite
|
Sign up to set email alerts
|

Segmentation of cervical cell images using mean-shift filtering and morphological operators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2012
2012
2023
2023

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 0 publications
0
6
0
1
Order By: Relevance
“…[22] Early approaches to segmentation included geometric image analysis techniques such as mean-shift, median filtering, adaptive thresholding, Canny edge detection, edge detection by Riemannian dilatation, and Hough transform for finding candidate nuclei. [232425] Doudkine et al approached the segmentation problem by analyzing texture features from slides stained with quantitative stains for DNA. They used descriptive statistics of chromatin distribution, discrete texture features, ranges, Markovian, run length and fractal texture features for image classification.…”
Section: Discussionmentioning
confidence: 99%
“…[22] Early approaches to segmentation included geometric image analysis techniques such as mean-shift, median filtering, adaptive thresholding, Canny edge detection, edge detection by Riemannian dilatation, and Hough transform for finding candidate nuclei. [232425] Doudkine et al approached the segmentation problem by analyzing texture features from slides stained with quantitative stains for DNA. They used descriptive statistics of chromatin distribution, discrete texture features, ranges, Markovian, run length and fractal texture features for image classification.…”
Section: Discussionmentioning
confidence: 99%
“…With recent progress on image segmentation, the above models have also been applied to microscopic image segmentation, such as mean shift clustering for cytology nuclei segmentation [15], MRF-based active contour for glandular boundary extraction [156], and active contours for histology image segmentation [37,62]. Specifically for histology image segmentation, we have developed two other models: Gaussian mixture model based pixel labeling [67] and color clustering [66], in addition to our active contour method [68].…”
Section: Histology Image Processing and Analysismentioning
confidence: 99%
“…Aquí también los autores reconocen explícitamente que automatizar el proceso de segmentación de células cervicales sigue siendo un problema abierto debido a las complejidades de las estructuras en las células. En [10] se sigue insistiendo en la abrumadora dificultad en delimitar el núcleo dentro de la célula, debido a la amplia variabilidad de los núcleos entre células. Utilizan un procedimiento interactivo de determinación de regiones de interés sobre versiones de baja resolución y luego utilizan la máxima resolución para detectar las células dentro de esas regiones mediante filtros de mediana y detección de bordes.…”
Section: Introductionunclassified