2020
DOI: 10.1007/s12065-020-00425-5
|View full text |Cite
|
Sign up to set email alerts
|

Self-adaptive learning for hybrid genetic algorithms

Abstract: Local search can be introduced into genetic algorithms to create a hybrid, but any improvement in performance is dependent on the learning mechanism. In the Lamarckian model, a candidate solution is replaced by a fitter neighbour if one is found by local search. In the Baldwinian model, the original solution is retained but with an upgraded fitness if a fitter solution is found in the local search space. The effectiveness of using either model or a variable proportion of the two within a hybrid genetic algorit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 27 publications
1
0
0
1
Order By: Relevance
“…Comparing the results of the models based on the optimization algorithms shows that the error of the COA is generally lower than the other two algorithms. This result is consistent with the poor performance of GA and PSO in local search (Zhuo and Yu 2019;El-Mihoub et al 2021) and maintaining a balance between the local and global search of the COA (Mareli and Twala 2018).…”
Section: Developing and Evaluating Permeability Prediction Modelssupporting
confidence: 85%
“…Comparing the results of the models based on the optimization algorithms shows that the error of the COA is generally lower than the other two algorithms. This result is consistent with the poor performance of GA and PSO in local search (Zhuo and Yu 2019;El-Mihoub et al 2021) and maintaining a balance between the local and global search of the COA (Mareli and Twala 2018).…”
Section: Developing and Evaluating Permeability Prediction Modelssupporting
confidence: 85%
“…Algoritma genetika juga digunakan untuk klasifikasi serta pengoptimalan lainnya [10]. Kinerja algoritma genetika berkerja dalam bentuk kode sekumpulan parameter [11], Untuk menyelesaikan masalah yang lebih rumit, algoritma genetika terintegrasi menggunakan metode hibridisasi untuk meningkatkan efektivitas kinerjanya [12]. Pencarian dilakukan dengan populasi dari masalah penjadwalan di representasikan menjadi string kromosom [13,14] serta berinterkasi dalam sub komponen [15] .…”
unclassified