2018
DOI: 10.3991/ijim.v12i4.9223
|View full text |Cite
|
Sign up to set email alerts
|

Sequential Pattern Mining Model to Identify the Most Important or Difficult Learning Topics via Mobile Technologies

Abstract: The paper aim is to come up with methodology for performing video learning data history of learner’s video watching logs, video segments or time series data in accordance with learning processes via mobile technologies. To reach this goal, it is introduced a theoretical method of sequential pattern mining specialized for learning histories in identifying the most important or difficult learning. Based on this method, it is designed a model for understanding and learning the most difficult topics of students to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…Tabla 1: Trabajos relacionados. Artículos 1 2 3 4 5 (Tarus et al, 2018) X X (Anwar y Uma, 2022) X (Zheng et al, 2019) X X (Wong et al, 2019) X X (Liu et al, 2018) X X X (Qu et al, 2019) X X (Klašnja-Milićević et al, 2018) X X (Zhu et al, 2019) (Deeva y De Weerdt, 2019) (Taub et al, 2018) X X (Wan y Niu, 2020) X X (Al-Twijri et al, 2022) (Taub y Azevedo, 2018b) X X (Norm Lien et al, 2020) X X (Yildirim y Usluel, 2022) X X X (Zhang et al, 2022) X X X (Shih, 2018) X X (Song et al, 2022) X X (Wang y Zaïane, 2018) (Mudrick et al, 2018) X X (Taub y Azevedo, 2018a) X X (Yang, 2021) (Bermudez et al, 2020) (Cheng Tan et al, 2020) X X (Malekian et al, 2020) X X (Kong y Pollock, 2020) X X (Latypova, 2022) X X X (Fatahi et al, 2018) X X X (Pogorskiy y Beckmann, 2022) X (He et al, 2021) X (Chen y Wang, 2020) X (Czibula et al, 2019) X X (Doko et al, 2018) X X (Real et al, 2021) X (Song y Ye, 2021) (Cheng et al, 2021) X (Niemeijer et al, 2020) X (Aktas y Aktas, 2021)…”
Section: Metodología De Análisismentioning
confidence: 99%
See 1 more Smart Citation
“…Tabla 1: Trabajos relacionados. Artículos 1 2 3 4 5 (Tarus et al, 2018) X X (Anwar y Uma, 2022) X (Zheng et al, 2019) X X (Wong et al, 2019) X X (Liu et al, 2018) X X X (Qu et al, 2019) X X (Klašnja-Milićević et al, 2018) X X (Zhu et al, 2019) (Deeva y De Weerdt, 2019) (Taub et al, 2018) X X (Wan y Niu, 2020) X X (Al-Twijri et al, 2022) (Taub y Azevedo, 2018b) X X (Norm Lien et al, 2020) X X (Yildirim y Usluel, 2022) X X X (Zhang et al, 2022) X X X (Shih, 2018) X X (Song et al, 2022) X X (Wang y Zaïane, 2018) (Mudrick et al, 2018) X X (Taub y Azevedo, 2018a) X X (Yang, 2021) (Bermudez et al, 2020) (Cheng Tan et al, 2020) X X (Malekian et al, 2020) X X (Kong y Pollock, 2020) X X (Latypova, 2022) X X X (Fatahi et al, 2018) X X X (Pogorskiy y Beckmann, 2022) X (He et al, 2021) X (Chen y Wang, 2020) X (Czibula et al, 2019) X X (Doko et al, 2018) X X (Real et al, 2021) X (Song y Ye, 2021) (Cheng et al, 2021) X (Niemeijer et al, 2020) X (Aktas y Aktas, 2021)…”
Section: Metodología De Análisismentioning
confidence: 99%
“…De la misma forma, Wang y Zaïane. ( 2018) trató el tema de una correcta recomendación de recursos educativos, al igual que Mudrick et al (2018) quien estudio el monitoreo metacognitivo para el desarrollo de un sistema de recomendación de cursos, por último, en Doko et al (2018) se recomendó un modelo y la arquitectura de un sistema para la visualización de videos educativos. 2019), ya que su área de estudio fue STEM (Science, Technology, Engineering, and Mathematics, Ciencia, Tecnología, Ingeniería y Matemáticas), el resto de los trabajos se centraron en áreas como sociales (Wong et al, 2019) o biología (Mudrick et al, 2018), sin embargo, hubo algunos trabajos que no mencionaron su área de estudio, este es el caso de Anwar y Uma.…”
Section: Clasificación De Los Trabajos Por Año De Publicación Y Edito...unclassified
“…In the learning/tutoring domain, temporal aspects are often used to identify the strategy of learners by finding sequential patterns in the users' learning activity (Maldonado et al, 2010;Doko et al, 2018;Wong et al, 2019;Uto et al, 2020). Some researchers, for example, consider the time it took for a student to solve a problem (Shen and Chi, 2016).…”
Section: Learning/tutoringmentioning
confidence: 99%
“…SPM is frequently used in the area of educational data mining; to identify sequences of events that can distinguish stronger/weaker groups in an online collaboration environment [67], and to extract learning features to classify learner groups [81]. It has been used in recent e-learning studies to improve online learning platforms, investigate online collaboration, and explore self-regulated learning [26,67,25]. Previous work has also used SPM to mine student behaviours from length and correctness of steps taken in online programming courses [45].…”
Section: Sequential Pattern Miningmentioning
confidence: 99%