Appropriate management of urban stormwater requires consideration of both water quantity, resulting from flood control requirements, and water quality, being a consequence of contaminant distribution via runoff water. This article focuses on the impact of temperature on the efficiency of stormwater treatment processes in permeable infiltration systems. Studies of the removal capacity of activated carbon, diatomite, halloysite, limestone sand and zeolite for select heavy metals (Cu and Zn) and biogenes (NH4-N and PO4-P) were performed in batch conditions at 3, 6, 10, 15, 22, 30 and 40 °C at low initial concentrations, and maximum sorption capacities determined at 3, 10, 22 and 40 °C. A decrease in temperature to 3 °C reduced the maximum sorption capacities (Qmax) of the applied materials in the range of 10% for diatomite uptake of PO4-P, to 46% for halloysite uptake of Cu. Only the value of Qmax for halloysite, limestone sand and diatomite for NH4-N uptake decreased slightly with temperature increase. A positive correlation was also observed for the equilibrium sorption (Qe) of Cu and Zn for analyses performed at low concentrations (with the exception of Zn sorption on limestone sand). In turn, for biogenes a rising trend was observed only in the range of 3 °C to 22 °C, whereas further temperature increase caused a decrease of Qe. Temperature had the largest influence on the removal of copper and the smallest on the removal of phosphates. It was also observed that the impact of temperature on the process of phosphate removal on all materials and ammonium ions on all materials, with the exception of zeolite, was negligible.