The comprehensive optical-electrical-thermalrecombination self-consistent VCSEL model is used to compare the performance of oxide-confined (OC) and protonimplanted (PI) VCSELs and to optimise their structures. Generally index-guided (IG) OC VCSELs demonstrate lower lasing thresholds whereas both gain-guided (GG) OC and PI ones manifest much better mode selectivity. Therefore, their either low-threshold IG or mode-selective GG versions may be intentionally used for different VCSEL applications. Lasing thresholds of OC IG VCSELs have been found to be very sensitive to the exact localisation of their thin oxide apertures, which should be shifted as close as possible towards the anti-node position. PI VCSELs, on the other hand, are simpler and cheaper in their manufacturing than OC ones. Although lower threshold currents are manifested by PI VCSELs with very thick implanted regions, lower threshold powers are achieved in these devices with much thicker upper unaffected layer used for the radial current flow from the ring contact towards the laser axis. Paradoxically poor thermal properties of PI VCSELs enable lower lasing thresholds of slightly detuned devices. To conclude, cheaper and mode-selective PI VCSELs may be used instead of OC ones in many of their applications provided ambient temperatures and laser outputs are not too high.