Drones can be used in agriculture applications to monitor crop yield and climate conditions and to extend the communication range of wireless sensor networks in monitoring areas. However, monitoring the climate conditions in agriculture applications faces challenges and limitations, such as drone flight time, power consumption, and communication distance, which are addressed in this study. Wireless power transfer (WPT) can be used to charge drone batteries. WPT using a magnetic resonant coupling (MRC) technique was considered in this study because it allows high transfer power and efficiency with tens of centimeters, power transfers can be achieved in misalignment situations, charging several devices simultaneously, and unaffected by weather conditions. WPT was practically implemented based on a solar cell using a proposed flat spiral coil (FSC) in the transmitter circuit and multiturn coil (MTC) in a receiver circuit (drone) for the alignment and misalignment of two coils at different distances. FSC and MTC improved power transfer and efficiency to 20.46 W and 85.25%, respectively, at 0 cm with the loaded system under alignment condition. In addition, the two coils achieved appropriate transfer efficiencies and power for charging the drone battery under misaligned conditions. The maximum power transfer and efficiency were 17.1 W and 71% for the misalignment condition, at an air gap of 1 cm between two coils when the system was loaded with the drone battery. Moreover, the battery life of the drone was extended to 851 minutes based on the proposed sleep/active strategy relative to the traditional operation (i.e., 25.84 minutes). Consequently, a 96.9% battery power saving was achieved based on this strategy. Comparison results showed that the proposed system outperformed some present techniques in terms of the transfer power, transfer efficiency, and drone battery life. The proposed WPT technique developed in this study has been proven to solve the misalignment issue. Thus it offers a great opportunity as a key deployment component for the automation of farming practices toward the Internet of Farming applications.INDEX TERMS Battery life, drone, energy efficiency, farming, flat spiral coil, flight time, multiturn coil, power consumption, wireless sensor network, solar panel.
I. INTRODUCTIONDrones can be used in the agriculture field [1]-[3] to monitor crop yield and climate conditions and to extend the The associate editor coordinating the review of this manuscript and approving it for publication was el-Hadi M. Aggoune. communication range of monitoring areas. Drones can be equipped with several payloads, such as sensors, highresolution and infrared cameras, tracking, and a global positioning system (GPS), as a delivery vehicle [4]. These drones generally run on batteries powered with high energy, such as lithium batteries, to enable flight times of