as an example. Under this formulation, the velocity field for turbulent pipe flow is decomposed into a series of highly amplified (rank-1) response modes, identified from a gain analysis of the Fourier-transformed NavierStokes equations. These rank-1 velocity responses represent propagating structures of given streamwise/spanwise wavelength and temporal frequency, whose wall-normal footprint depends on the phase speed of the mode. Opposition control, introduced via the boundary condition on wall-normal velocity, affects the amplification characteristics (and wall-normal structure) of these response modes; a decrease in gain indicates mode suppression, which leads to a decrease in the drag contribution from that mode. With basic assumptions, this rank-1 model reproduces trends observed in previous direct numerical simulation and large eddy simulation, without requiring high-performance computing facilities. Further, a wavenumber-frequency breakdown of control explains the deterioration of opposition control performance with increasing sensor elevation and Reynolds number. It is shown that slower-moving modes localized near the wall (i.e. attached modes) are suppressed by opposition control. Faster-moving detached modes, which are more energetic at higher Reynolds number and more likely to be detected by sensors far from the wall, are further amplified. These faster-moving modes require a phase lag between sensor and actuator velocity for suppression. Thus, the effectiveness of opposition control is determined by a trade-off between the modes detected by the sensor. However, it may be possible to develop control strategies optimized for individual modes. A brief exploration of such mode-optimized control suggests the potential for significant performance improvement.