2018
DOI: 10.1016/j.compedu.2018.04.006
|View full text |Cite
|
Sign up to set email alerts
|

Study on student performance estimation, student progress analysis, and student potential prediction based on data mining

Abstract: The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
89
0
8

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 158 publications
(97 citation statements)
references
References 30 publications
0
89
0
8
Order By: Relevance
“…Higher Education institutions have not been alien to the discussions, as some scholars argued that gathering as much information as possible about university students, professors and administration staff could enable deep analysis and, thereby, proactive actions in student attention, course planning and resource management [4][5][6]. In this line, there have been numerous studies in the recent past about predicting student outcomes using Artificial Intelligence (AI) techniques [7][8][9][10][11][12][13][14][15][16][17] and it is generally assumed that the more abundant the data, the more accurate the predictions.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Higher Education institutions have not been alien to the discussions, as some scholars argued that gathering as much information as possible about university students, professors and administration staff could enable deep analysis and, thereby, proactive actions in student attention, course planning and resource management [4][5][6]. In this line, there have been numerous studies in the recent past about predicting student outcomes using Artificial Intelligence (AI) techniques [7][8][9][10][11][12][13][14][15][16][17] and it is generally assumed that the more abundant the data, the more accurate the predictions.…”
Section: Introductionmentioning
confidence: 99%
“…Our experiment consisted in performing a scan of hyperparameters for a Multi-Layer Perceptron (MLP) neural network, in search for the configuration that attained the greater accuracy in predicting academic outcomes from the socio-economic data. We chose the MLP for being one of the best understood machine learning models, commonly used in the related literature [18,19]; its best configuration would be used as a benchmark for the comparison of other techniques, including the ones used in References [7][8][9][10][11][12][13][14][15][16][17] and more advanced neural network schemes. However, the scan of hyperparameters revealed no correlations or dependencies between the input variables and the chosen metrics in any case, showing that-at least for the UPS and alike settings-there is no actual gain from applying machine learning techniques on extensive socio-economic data.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Dengan menganalisis kinerja siswa, program strategis dapat direncanakan dengan baik selama masa studi mereka di sebuah institusi (Ibrahim & Rusli, 2007). Namun, pekerjaan yang ada tidak menyediakan alat analisis yang cukup untuk menganalisis bagaimana siswa melakukan, faktor mana yang akan mempengaruhi kinerjanya, dengan cara mana siswa dapat membuat kemajuan, dan apakah siswa memiliki potensi untuk melakukan yang lebih baik (Yang & Li, 2018). Informasi kemajuan pembelajaran siswa menjadi salah satu faktor penilaian seorang pendidik dalam menganalisis kinerja siswa.…”
unclassified
“…Informasi kemajuan pembelajaran siswa menjadi salah satu faktor penilaian seorang pendidik dalam menganalisis kinerja siswa. Namun cara tersebut tidaklah efektif karena informasi kemajuan pembelajaran siswa tidak cukup sebagai indikator para siswa dan pendidik untuk melakukan perbaikan dalam pengajaran dan pembelajaran (Yang & Li, 2018).…”
unclassified